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Chapter 4

An Introduction to

Numerical Methods for 

Parabolic Equations

First Session Contents:

1) Introduction

2) Finite Difference Methods

3) Explicit methods for Parabolic Equations

4) Truncation Error (T.E.)

5) Consistency

6) Stability
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Parabolic PDE

In this chapter, we will discuss about the 

numerical solution of one-dimensional 

parabolic PDE as given below:

B.C.’s

I.C.
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Computational Domain for Parabolic PDEs
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Computational Domain for Parabolic PDEs

𝑥
𝑡

Grid Points   or Mesh Points

Grid Spacing

Time Step
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Discretization

Transient Term (Forward Difference)

Diffusion Term (Central Difference)

General PDE

Substituting transient and diffusion terms in the PDE, we have 

where

where is the central difference operator
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Explicit Methods for Parabolic PDEs

1-D transient Heat Conduction Problem

Using the following Eq., the temperature at time step n+1 can be obtained 

from the temperature at time step n.

At time step n=1, temperature is known as initial condition.

Therefore,

Temperature at n+1, n+2, …  can be obtained.

[un+1]=[A][un]

A method which calculates the state of a system at a later time from the state 

of the system at the current time is called

Explicit Method
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Explicit Method (FTCS)

Solution is known 

at this level

Transient Term (Forward Difference)

Diffusion Term (Central Difference) FTCS

Forward Time Central Space
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Example (FTCS)

Initial

Condition
Boundary

Conditions

0 1

𝑢

𝑥0.5

1

𝑡 = 0
Initial Condition
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Example (FTCS)
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Exact Solution

Numerical Solution

Example (FTCS)
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Example (FTCS)

Time
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Example (FTCS)

Time

Symmetry
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Example (FTCS)

Time
Numerical 

Solution

Exact

Solution
Absolute 

Error

Relative

Error

%

Time
Numerical 

Solution

Exact

Solution
Absolute 

Error

Relative

Error

%
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Example (FTCS)

Time
Numerical 

Solution

Exact

Solution
Absolute 

Error
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Error

%

Time
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Solution

Exact

Solution
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Error
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%
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Example (FTCS)

1

1 1-1

16

tt

Example (FTCS)
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tt

Example (FTCS)

The value of r plays 

an important role in 

explicit methods
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Example (FTCS)
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Example (FTCS)
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Propagation Speed of  a Disturbance
Consider a 1-D parabolic PDE with all initial 

conditions are zero except at point A

A
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A

The propagation speed 

of a disturbance in 

parabolic PDEs for 

given time is

infinity 

The propagation speed of a 

disturbance in finite-difference 

form of the Parabolic PDE for 

given time is

∆𝒙 / ∆𝒕

Slope of 

Characteristics lines:

𝒅𝒕

𝒅𝒙
=

∆𝒕

∆𝒙
≠ 0

Propagation Speed of  a Disturbance
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A

Slope of 

Characteristics lines:

𝒅𝒕

𝒅𝒙
=

∆𝒕

∆𝒙
≠ 0

∆𝒙

∆𝒕
=

∆𝒙

𝒓 ∆𝒙 𝟐
=

𝟏

𝒓∆𝒙
∆𝒙 → 𝟎
𝒓 = 𝐂𝐨𝐧𝐬𝐭.

𝒅𝒕

𝒅𝒙
→ 𝟎Solution: 

Propagation Speed of  a Disturbance

The propagation speed 

of a disturbance in 

parabolic PDEs for 

given time is

infinity 

The propagation speed of a 

disturbance in finite-difference 

form of the Parabolic PDE for 

given time is

∆𝒙 / ∆𝒕
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Truncation Error (T.E.)

General PDE

Discretized PDE

≈
If h and k are small enough then T.E. 

approaches to zero and the discretized 

form is a good approximation of 

general PDE

Truncation Error is Defined as as ℎ, 𝑘 → 0
independently
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Truncation Error (T.E.)

T.E. is obtained by 

writing the Taylor 

series of each term 

around point (xi ,tn) 
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Truncation Error (T.E.)

T.E. is obtained by 

writing the Taylor 

series of each term 

around point (xi ,tn) 

 Is the finite difference form of PDE acceptable?

 Does the marching method give a good approximation of PDE?

The finite-difference form of PDE should satisfy

both Stability and Consistency conditions
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Consistency
Finite-difference form of a PDE is consistent if:

In some finite-difference methods the T.E. is  
𝑶(∆𝒙)

𝑶(∆𝒕)

These methods are consistent if    
∆𝒙

∆𝒕
→ 0

DuFort-Frankel

method

The DuFort-Frankel method is consistent if        lim
∆𝒙,∆𝒕→0

∆𝒙

∆𝒕
= 0

T.E.
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Stability

 Concept of stability occurs in marching problems 

 A numerical method is stable

If the errors of any kind (Round of error and Truncation error) 

will not grow (increasing unconditionally) during time marching. 

 Generally, analysis of Consistency in a numerical method is more 

easier than analysis of Stability

 An explicit method is stable if

28

Example

Forward Time Central Space

u n+1=100-0+100=200
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Convergence for Marching Problems

Generally, a numerical method converges

if it is both stable and consistence

A numerical method converges if its global discretization error 

approaches zero as the mesh is refined

Given a well-posed initial value problem and a finite-difference

approximation to it that satisfies the consistency condition,

stability is the necessary and sufficient condition for convergence

Lax’s Equivalence Theorem


